Что такое трансформатор и как его проверить

Сколько вольт в трансформаторе. Что такое трансформатор и как его проверить Теперь рассмотрим, как ее включить, а заодно и проверить само наличие на девайсе.

Что такое трансформатор и как его проверить

Сварочный аппарат, микроволновка, компьютер, блок питания, телевизор — такие разные электроприборы но в каждом из них есть трансформатор. Как прозвонить обмотки и замерить напряжение выдаваемое трансформатором, как посчитать допустимую мощность и что такое ток холостого хода — вопросы на которые Вы получите исчерпывающие ответы и несколько практических советов по работе с трансформаторами. В конце расскажу о трансформаторе тока и где он используется.

  • Для чего нужен трансформатор?
    • Как рассчитать обмотки трансформатора
    • Как прозвонить обмотки трансформатора?

    Для чего нужен трансформатор?

    Основное свойство трансформатора преобразование напряжения или тока до требуемого значения и гальванической развязки — это очень полезное свойство трансформаторов о котором расскажем ниже.

    И так, например, в домашней электро-розетке напряжение 220 вольт 50 герц (AC — так на схемах и блоках питания обозначают переменное напряжение — AC 220v 50hz), т.е., переменное напряжение, а для питания ноутбука нам нужно 18 вольт постоянного тока (DC — так обозначается постоянное напряжение DC 18v). С помощью трансформатора мы можем преобразовать напряжение до требуемой величины, а затем выпрямить его. После чего, это напряжение будет пригодно для питания Вашего ноутбука. Не совсем понятно? Не хватает термина — Коэффициент трансформации.

    Как рассчитать обмотки трансформатора

    В нашем примере, 220/18=12,22 это соотношение количества витков обмоток и это значение коэффициента трансформации.
    Что такое трансформатор и как его проверить🔴 Что такое трансформатор и как его проверитьЗная, коэффициент трансформации , этим числом можно посчитать количество витков трансформатора. Если поменять обмотки, т.е., подать напряжение 220 вольт на вторичную обмотку, с первичной мы получим 2688 вольт — но делать так я не рекомендую, транс сгорит сразу или выбьет автомат в щитке.
    Допустим, вы знаете что в первичной обмотке транса 2200 витков, а сколько витков должно быть во вторичной обмотке для получения 18 вольт? Все просто, 18 (напряжение в вольтах)*12,22 (коэффициент трансформации) = 220 витков.

    Как устроен трансформатор?

    Что такое трансформатор и как его проверить🔴 Что такое трансформатор и как его проверить

    Простейший трансформатор, это две независимых обмотки связанных магнитопроводом. В первой обмотке создается магнитное поле, затем через магнитопровод передается на вторую обмотку, в которой в зависимости от коэффициента трансформации повышается или понижается. На самом деле, все значительно сложнее, много факторов влияющих на выходное напряжение, но для данного контекста этого достаточно.

    Какие бывают трансформаторы?

    1. Повышающий трансформатор (высоковольтный) — повышает напряжение до требуемой величины, но снижает ток пропорционально. При повышении напряжения более чем 20-30 раз большое значение имеет КПД трансформатора, как правило для частоты 50 герц это предел, дальше начинаются значительные потери. Для повышения КПД трансформаторов увеличивают частоту, так высоковольтный трансформатор в электро-шокере повышает напряжение до 20-100 тысяч вольт и работает на частотах от 800гц до 2,4кгц. При этом, ток пропорционально снижается.
    2. Понижающий трансформатор (силовой) — понижает напряжение до требуемой величины, пропорционально увеличивает допустимый ток. Например сварочный аппарат, снижает напряжение до 50 вольт (в 4,4 раза), увеличивает ток в 4,4 раза. Но для соблюдения этого условия сечение провода во вторичной обмотке тоже, должно быть больше в 4,4 раза.

    Автотрансформатор (ЛАТР) — понижающий трансформатор с одной обмоткой, с которой с помощью ручки реостата, получают напряжение от 1 до 180 вольт. Такие трансы используются в лабораторных условиях для проверки различных устройств. В быту используется в некоторых регуляторах напряжения.

    Масляный трансформатор — трансформатор монстр! с обмотками трубами, заполненными минеральным маслом. Такие устанавливают в силовых подстанциях для снижения напряжения с 10000 вольт до 220. Если передавать на большое расстояние напряжение в 220 вольт по обычным проводам, потери будут значительны. Как известно, чем выше напряжение, тем меньше влияет сопротивление провода. С ТЭЦ и ГРЭС по Линиям Электро Передач передается вообще 100000 вольт!

    Импульсный трансформатор — без него не обходится не один современный электроприбор, будь то ТВ, ноутбук, компьютер или зарядник для телефона. Как правило работает на частотах свыше 800гц в паре с контроллером ШИМ который увеличивает частоту импульсов в возрастанием нагрузки. Гениальное изобретение, позволяющее получать большие токи при скромных размерах. Сравните размеры традиционного сварочного аппарата и сварочного инвертора работающего на этом принципе.

    Как отличить первичную обмотку от вторичной в трансформаторе

    Существует три основных признака первичной обмотки трансформатора:

    1) В понижающем трансформаторе сопротивление первичной обмотки значительно выше, чем вторичной.

    2) Как правило, первичная обмотка наматывается более тонким проводом.

    3) Первичная обмотка транса наматывается ближе к магнитопроводу для увеличения КПД трансформатора.

    4) Если трансформатор запаян в схему, можно посмотреть по выводам. Во вторичной обмотке, как правило включается диодный мостик и за ним электролитический конденсатор большой емкости (от 1000мкф). В первичной, обычно ставят предохранитель.
    Подробно, как определить где первичная обмотка смотрите видео ниже.

    Как прозвонить обмотки трансформатора?

    Если в вашем распоряжении цешка или мультиметр, выяснить где и какая обмотка не так сложно. Включаем тестер в режим измерения сопротивления (100ом) и прозваниваем выводы трансформатора. Допустим, тестер показал на одной из обмоток 89ом, на другой всего 7ом — соответственно это вторичка.

    совет электрика рекомендуетВ нашей группе ВКонтакте мы собрали видео инструкции от лучших электриков, смотрите и присоединяйтесь к нам!

    Как узнать ток холостого хода у трансформатора?

    Ток холостого хода — это ток, который транс потребляет без нагрузки, чем он ниже, тем качественнее рассчитан и изготовлен трансформатор. Низкое качество магнитопровода, межвитковое замыкание, неправильное подключение увеличивают ток холостого хода. Этот ток преобразуется в тепло и если он велик (более 20-100ма) транс может сгореть. Переключите тестер в режим измерения тока и включите последовательно с первичной обмоткой трансформатора. по результату измерения, решайте сами не опасно ли использовать такой трансформатор.

    Трансформатор простыми словами

    Мы привыкли к тому, что напряжение в розетке всегда 220 В. Возможно не все читатели подозревают, что прежде чем поступить к потребителю, выполнялись преобразования электрической энергии. Перед поступлением на провода ЛЭП, напряжение переменного тока увеличивали до десятков, а то и сотен киловольт, а на выходе – понижали, до привычных нам 220 В. Эти преобразования выполнили силовые трансформаторы. В данной статье я расскажу вам, что такое трансформатор простыми словами.

    Потребность в преобразования переменного напряжения возникает практически на каждом шагу. Чаще всего мы испытываем необходимость в понижении напряжения, так как большинство узлов современных электронных устройств работает при низких напряжениях. Однако для некоторых цепей высоковольтных узлов требуются значительные напряжения, порядка нескольких тысяч вольт.

    Промышленный трансформатор

    Рис. 1. Промышленный трансформатор

    Что такое трансформатор?

    Если коротко, то это стационарное устройство, используемое для преобразования переменного напряжения с сохранением частоты тока. Действие трансформатора основано на свойствах электромагнитной индукции.

    Немного исторических фактов

    В основу действия трансформатора легло явление магнитной индукции, открытое М. Фарадеем в 1831 г. Физик, работая с постоянным электрическим током, заметил отклонение стрелки гальванометра, подключенного к одной из двух катушек, намотанных на сердечник. Причем гальванометр реагировал только в моменты коммутации первой катушки.

    Поскольку опыты проводились от источника постоянного тока, Фарадей не смог объяснить открытое явление.

    Прообраз трансформатора появился лишь в 1848 году. Его изобрел немецкий механик Г. Румкорф, называя устройство индукционной катушкой особой конструкции. Однако Румкорф не заметил трансформации выходных напряжений.Датой рождения первого трансформатора считается день выдачи патента П. Н. Яблочкову на изобретение устройства с разомкнутым сердечником. Это случилось 30.11.1876 года.

    Типы аппаратов с замкнутыми сердечниками появились в 1884 году. Их создали англичане Джон и Эдуард Гопкнинсоны.

    По большому счету, технический интерес у электромехаников к переменному току возник только благодаря изобретению трансформатора. Идеи российского электротехника М. О. Доливо-Добровольского и всемирно известного Николы Тесла победили в спорах о преимуществах переменных напряжений именно благодаря возможности трансформации тока.

    С победой идей этих великих электротехников потребности в трансформаторах резко выросла, что привело к их усовершенствованию и созданию новых типов приборов.

    Общее устройство и принцип работы

    Рассмотрим конструкцию простого трансформатора, с двумя катушками насаженных на замкнутый магнитопровод (см. Рис. 2). Катушку, на которую поступает ток, будем называть первичной, а выходную катушку – вторичной.

    Устройство трансформатора

    Рисунок 2. Устройство трансформатора

    Фактически все типы трансформаторов используют электромагнитную индукцию для преобразования напряжения поступающего в цепь первичной обмотки. При этом выходное напряжение снимается из вторичных обмоток. Они различаются только по форме, материалам магнитопроводов и способам наматывания катушек.

    Ферромагнитные сердечники применяются в низкочастотных моделях. Для таких сердечников используются материалы:

    • сталь;
    • пермаллой;
    • феррит.

    В некоторых высокочастотных моделях магнитопроводы могут отсутствовать, а в некоторых изделиях применяют материалы из высокочастотного феррита или альсифера.

    В связи с тем, что для характеристик ферромагнетиков характерна нелинейность намагничивания, сердечники набирают из листовых материалов, на которые надевают обмотки. Нелинейная индуктивность приводит к гистерезису, для уменьшения которого применяют метод шихтования магнитопроводов.

    Форма сердечника может быть Ш-образной или торроидальной.

    Рисунок 3. Внешний вид трансформатора

    Базовые принципы действия

    Когда на выводы первичных обмоток поступает синусоидальный ток, то он во второй катушке создает переменное магнитное поле, пронизывающее магнитопровод. В свою очередь, изменение магнитного потока провоцирует наведение ЭДС в катушках. При этом величина напряжения ЭДС в обмотках находится в пропорциональной зависимости от количества витков и частоты тока. Отношение количества витков в цепи первичной обмотки к числу витков вторичной катушки называется коэффициентом трансформации: k = W1 / W2, где символами W1 и W2 обозначено количество витков в катушках.

    Если k > 1, то трансформатор повышающий, а при 0 < k < 1 – понижающий. Например, когда число витков, из которых состоит первичная обмотка, в три раза меньше количества вторичных витков, то k = 1/3, тогда U2 = 1/3 U1.

    Режимы работы

    Силовой трансформатор может работать в трех режимах:

    • в состоянии холостого хода;
    • в режиме нагрузки;
    • в короткозамкнутом режиме.

    Поскольку в цепи разомкнутой вторичной обмотки отсутствует ток, то в таком состоянии по первичной обмотке циркулирует ток холостого хода. Параметры этого тока используют при расчетах КПД, определяют коэффициент трансформации, находят потери в сердечнике.

    Основным рабочим режимом трансформатора является состояние, когда к его второй обмотке подключена номинальная нагрузка. Первичный ток можно выразить через результирующую тока холостого хода и расчетного тока сопротивления нагрузки.

    В режиме короткого замыкания вторичной обмотки, вся мощность концентрируется в цепях обмоток. В таком состоянии можно определить потери, расходуемые на нагревание проводов в обмотках.

    Технические характеристики

    Важной характеристикой являются коэффициенты трансформации. Они показывают зависимость выходного напряжения от соотношения витков в обмотках. Коэффициент трансформации является базовым параметром при расчете.

    Другая важная характеристика трансформатора – его КПД. В некоторых аппаратах этот показатель составляет 0,9 – 0,98, что характеризует незначительные потери магнитных полей рассеяния. Мощность P зависит от площади S сечения магнитопровода. По значению S, при расчетах параметров трансформатора, определяют количество витков в катушках: W = 50 / S.

    На практике мощность выбирают исходя из предполагаемой нагрузки, с учетом потерь в сердечнике. Мощность вторичной обмотки Pн= Uн× Iн, а мощность первичной катушки Pс= Uс× Iс. В идеале Pн = Pс (если пренебречь потерями в сердечнике). Тогда k = Uс / Uн = Iс / Iн , то есть, токи в каждой из обмоток имеют обратно пропорциональную зависимость от их напряжений, следовательно, и от количества витков.

    Виды трансформаторов

    С целью решения вопросов трансформации напряжения в различных цепях изобретены трансформаторы самых разных конструкций. Производители выбирают свои концепции магнитопроводов (см. рис. 4), которые не влияют на работу и параметры приборов:

    • стержневой тип (применяется в основном для трехфазных конструкций);
    • броневой тип (трехфазные аппараты);
    • тороидальный тип сердечника часто используется в трансформаторах, применяемых в различных электротехнических устройствах.

    Более широкий спектр охватывает классификация по назначению.

    Силовые

    Назначения силового трансформатора понятно из названия. Термин силовые применяется к семейству моделей, как правило, большой мощности, используемых для преобразования электрической энергии в сетях ЛЭП и в различных обслуживающих установках.

    При трансформации сохраняются частоты переменного тока, поэтому возможно подключение силовых трансформаторов в группы для работы в высоковольтных трехфазных сетях.

    Силовые аппараты могут соединяться в группы с различными схемами подключения обмоток: по принципу звездочки, треугольником или зигзагом. Схема звездочка оправдана, если в трехфазных сетях нагрузка симметрическая. В противном случае предпочтения отдают треугольнику. При таком способе подключения токи первичной обмотки подмагничивают по отдельности каждый стержневой магнитопровод.

    Тогда однофазное сопротивление приблизится к расчетному, а перекос напряжений будет устранен.

    Автотрансформаторы

    Группа устройств, в которых первичная и вторичная обмотки за счет их прямого соединения между собой образуют электрическую связь, называется автотрансформаторами. Характерным признаком этой группы является несколько пар выводов, к которым можно подключить нагрузку.

    Обмотки автотрансформаторов имеют не только магнитную, но и электрическую связь. Они нашли применение в соединениях заземленных сетей, работающих под напряжением, превышающим 110 кВ, но при низких коэффициентах трансформации – не более 3 – 4.

    Можно первичную обмотку подключить последовательно в электрическую цепь с другими устройствами и получить гальваническую развязку. Такие приборы получили названия трансформаторов тока. Первичную цепь таких устройств контролируют путём изменения однофазной нагрузки, а вторичную катушку используют в цепях измерительных приборов или сигнализации. Второе название приборов – измерительные трансформаторы.

    Особенностью работы измерительных трансформаторов является особый режим выходной обмотки. Она функционирует в критическом режиме короткого замыкания. При разрыве вторичной цепи возникает резкое повышение напряжения в ней, что может вызвать пробои или повреждение изоляции.

    Трансформатор тока

    Трансформатор тока

    Напряжения

    Типичное применение – изоляция логических цепей защиты измерительных приборов от высокого напряжения. Трансформатор напряжения – это понижающий прибор, преобразующий высокое напряжение в более низкое.

    Импульсные

    В работе современной электронике применяются высокочастотные сигналы, которые часто необходимо отделить от других сигналов.
    Задача импульсных трансформаторов – преобразования импульсных сигналов с сохранением формы импульса.

    Для высокочастотных импульсных аппаратов выдвигаются требования о максимальном сохранении формы импульса на выходе. Имеет значение именно форма, а не амплитуда и даже не знак.

    Сварочные

    В работе сварочного аппарата важен большой сварочный ток. При этом, сетевое напряжение понижают до безопасного уровня. Благодаря мощному электрическому току дуговой разряд сварочного аппарата плавит металл.

    В сварочном трансформаторе имеется возможность ступенчатого регулирования величины тока во вторичных цепях способом изменения индуктивного сопротивления, либо путем секционирования одной из обмоток.

    Фото устройства представлено на рисунке 6. Обратите внимание на наличие коммутирующего переключателя.

    Трансформатор для сварочного полуавтомата на броневом магнитопроводе

    Рис. 6. Трансформатор для сварочного полуавтомата на броневом магнитопроводе

    В сварочных аппаратах применяют конструкции на основе однофазных трансформаторов, а также с применением трехфазных трансформаторов. Для сварки некоторых металлов, например, нержавейки, сварочный ток выпрямляют.

    Разделительные

    Устройства, в которых нет электрической связи между обмотками, называют резделительными трансформаторами. Силовые разделительные аппараты применяются для повышения безопасности электросетей. Другая область применения разделительных трансформаторов – обеспечение гальванической развязки между отдельными узлами электрических цепей.

    Согласующие

    Данные типы аппаратов применяют для согласования сопротивления каскадов электронных схем. Они обеспечивают минимальное искажение формы сигналов, создают гальванические развязки между узлами электронных устройств.

    Пик-трансформаторы

    Аппараты, преобразующие синусоидальные токи в импульсные напряжения. Полярность выходных напряжений меняется через каждых полпериода.

    Воздушные и масляные

    Силовые трансформаторы бывают сухими (с воздушным охлаждением) (см. рис. 7) и масляными (см. рис. 8).

    Модели сухих силовых трансформаторов чаще всего используют для преобразований сетевых напряжений, в том числе и в схемах трехфазных сетей.

    Сухой трехфазный трансформатор

    Рисунок 7. Сухой трехфазный трансформатор

    При подключении нагрузки происходит нагревание обмоток, что грозит разрушением электрической изоляции. Поэтому в сетях с напряжениями свыше 6 кВ работают приборы с масляным охлаждением. Специальное трансформаторное масло повышает надежность изоляции, что очень важно при больших выходных мощностях.

    Строение промышленного трансформатора с масляным охлаждением

    Рис. 8. Строение промышленного трансформатора с масляным охлаждением

    Сдвоенный дроссель

    Конструктивно такой аппарат является трансформатором с одинаковыми катушками. Катушки одинаковой мощности образуют встречный индуктивный фильтр. Эффективность аппарата выше, чем у дросселя (при одинаковых размерах).

    Вращающиеся

    Применяются для обмена сигналами с вращающимися барабанами. Конструктивно состоят из двух половинок магнитопровода с катушками. Эти части вращаются относительно друг друга. Обмен сигналами происходит при больших скоростях вращения.

    Обозначение на схемах

    Трансформаторы наглядно изображаются на электрических схемах. Символически изображаются обмотки, которые разделены магнитопроводом в виде жирной или тонкой линии (см. рис. 9).

    Пример обозначения

    Пример обозначения

    На схемах трехфазных трансформаторов обмотки начинаются со стороны сердечника.

    Области применения

    Кроме преобразования напряжений в электрических сетях, трансформаторы часто применяются в блоках питания радиоэлектронных устройств. Преимущественно это автотрансформаторы, которые одновременно выдают несколько напряжений для различных узлов.

    Сегодня все чаще используют бестрансформаторные блоки питания. Однако там где требуется питание мощным переменным током, без электромагнитных устройств не обойтись.


    источники:

    https://100uslug.com/chto-takoe-transformator-i-kak-ego-proverit/

    https://www.asutpp.ru/transformator-prostymi-slovami.html